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ABSTRACT 

The diocotron (or slipping s t r eam)  instability of low density 
( W  << Oc)  electron beams in c rossed  fields i s  considered for  a cylindrical  
geometry.  
t ron  beam correspond to a continuum of eigenvalues, plus two d iscre te  
eigenvalues. 
uous spec t rum is not important in  stability studies of this type. The condi- 
tion for  stability considering the discrete  modes only i s  derived; under 
suitable geometrical  and electr ical  conditions, i t  is  shown that these modes 
can  be stable. 
he re  and the problem of the stability of an ideal rotating fluid is  discussed.  
It i s  shown that stability conditions derived for  the la t ter  problem depend 

P F o r  a simple density distribution, the normal  modes of the elec-  

Work due to Case and Dikii appears  to show that the contin- 

The analogy between the electromagnetic problem considered 

on the possibility of axial perturbations;  what this impliesA for  
beam problem i s  briefly discussed. 



INTRODUCTION 

The Diocotron (or  Slipping Stream) instability has  been known for  
some t i rne, l ,  2, 3 ,  and i t  fo rms  the bas i s  of the small-signal theory of the 
c r o s s e d  f ie ld  microwave magnetron. F o r  one reason o r  another,  however, 
i t  appears  that this instability has  not been extensively studied in  a cylin- 
d r i ca l  geometry.  This situation, although somewhat surprising a t  f i r s t  
sight (since magnetrons a r e  generally cylindrical)  may possibly be ex-  
plained by the observation that the annulus in which the electron beam 
t rave ls  frequently has  a ra ther  small aspect ratio and can therefore be 
approximately t rea ted  a s  p lanar ,  
cer ta in  phenomena relevant to thick beams in cylindrical geometr ies  a r e  
not adequately t rea ted  by the planar theory.  
planar  theory of thick electron beams that such beams a r e  always unstable 
to  perturbations having sufficiently long wavelengths. However, it has  been 
pointed out5 that when a thick beam i s  moving around a c i rcu lar  (or  other 
c losed)  path, th&t an  upper limit to the wavelength of permissible  dis tur-  
bances i s  approximately given by the per imeter  of the path. Thus, the 
question a r i s e s  a s  to whether an electron beam moving in  a c i rcu lar  path 
i n  c ros sed  e lec t r ic  and magnetic fields can be stabilized by being made 
sufficiently thick. 
tion of this effect. 

Whatever the situation in this regard ,  

Thus,  it  i s  known f r o m  the 

It i s  the purpose of this  note to give a quantitative evalua- 

BASIC FORMULATION 

We consider the geometry i l lustrated in  F i g .  1 .  Two concentric,  --.. ~ ~ ~ f e c t l y  condacting cylinders of radii a ar?d c! are  aligned a l o n g  the x - a x i s ,  

A constant uniform magnetic field of strength B ac ts  in the z-direction. In 
the basic (unperturbed) state the space between the electrodes is  filled with 
electrons having a density no ( r )  where r i s  the distance f rom the axis.  
Following Gould's analysis of the planar case ,  we suppose that the electron 
density i s  sufficiently low relative to the magnetic field intensity that 
Up<< Oc, the symbols referr ing,  respectively, to the plasma and cyclotron 
frequencies.  
E ( r )  which is related to the electron density by Gauss '  law: 

The unperturbed state is then defined by a radial  e lectr ic  field 

0 

-n e 
( r  Eo) = - . O  1 d  

r d r  
- -  

€0 

The electr ic  charge on the inner electrode (per unit axial length) i s  just 

Q 



F i g .  1 I l lustrates  the basic geometry considered in  the text. 
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Q can  be equal in  magnitude (but opposite in sign) to the total charge in the 
electron cloud, but i t  can also have any other value. 
corresponds to a definite value of the potential between the inner and outer 
cylinders.  The electrons move (in the unperturbed s ta te)  in  the azimuthal 
direction with velocity v 

Each  value of Q 

= -Eo/B. 
0 

We consider next the perturbed motions of this  system. To s t a r t  
with, we consider only two-dimensional perturbations,  but we will give a 
brief discussion of three-dimensional perturbations a t  a la te r  stage.. Once 
again following Gould, we apply the quasi-  static approximation and assume 
that the electr ic  field due to any perturbation can  be t reated a s  irrotational.  
We anticipate t e resul t  that the frequencies of in te res t  i n  this  study a r e  on 
the o rde r  of 0 ' / W C ,  that is  much less  than 0 and hence, a for t ior i ,  much 
l e s s  than W C .  'This observation justifies taking for  the electronic equation 
of motion: 

P 

where (u,  v) and E,, E 8  a r e ,  respectively, the radial  and azimuthal com- 
ponents of the velocity and electr ic  fields. 
implies  first the existence of a potential 6: 

The quasi-  static assumption 

and second, from Eq. ( 3 ) ;  

In addition to the above, we have the equation of conservation for the elec- 
t rons  : 

a n  t n d i v v t v . V n = O  
N N  

In view of Eq. (5), the middle t e r m  in  Eq. (6)  vanishes: thus 

This condition s ta tes  simply that the electron density of any small  
p a r c e l  is  conserved following the motion, even though the density var ies  
spatially o r  temporally. 

We now linearize by assuming 
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where,  as usual, the physical quantities a r e  the r e a l  p a r t s  of the complex 
quantities appearing in Eq. (8). On linearization, Eq. (7)  yields: 

dn Q4 0 n(U - Q v o / r )  = - - Br dr (9) 

Substituting Eq. (9)  in  Poisson 's  equation yields, finally: 

Up to this point, we have left the choice of zero o rde r  profile ent i re ly  
We shall now make a choice governed by considerations of convenience. f r e e .  

We assume:  \ 

I n = 0 ( a d r < b ; c < r s d )  

n = N  ( b 5 r P c )  

0 

0 

The purpose of this choice i s  that i t  makes dno/dr = 0 in each of th ree  r e -  
gions. 
s impler  form: 

In the inter ior  of these regions, then, Eq.  (10) reduces to the much 

and we also have, f rom Eq. (9),  n = 0. Thus, the perturbation we have to 
deal  with i s  much simplified and involves ( a s  noted by Gould) no per turba-  
tion charge density a t  a l l  in the inter ior  of the electron cloud, but mere ly  an 
accumulation at each of the two f ree  surfaces .  This observation leads us  to 
consider the conditions to be applied a c r o s s  the f r e e  surfaces  x = b and 
r = c .  In the f i rs t  place,  we must  c lear ly  assume the perturbation potential 
to be continuous a c r o s s  these surfaces .  
a c r o s s  the surface, various methods have been proposed, but the one that 
s eems  simplest i s  a s  follows: we mere ly  integrate Eq. (10) for a short  
distance f rom r = b - 6 to r = b t 6 and let  6 + 0. The bracket containg .0 
has  virtually a constant value in this range and can therefore  be taken 
out of the integration. On the right hand side,  dno/dr can be t reated as a 
delta function, while 4 (and J $d r ) ,  being continuous, give no contribution 
to an  integral  over a vanishing range. Putting these f ac t s  together yields: 

F o r  obtaining the change in d+/dr 

3 
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The specification of the problem i s  now completed by noting that the 
boundary conditions appropriate to conducting electrodes a t  r = a and r = d 
a r e  simply $(a)  = 4(d) = 0. 

At this stage, i t  would appear that the problem i s  completely solved, 
a t  l eas t  in principle. We have only to write down the eigenfunctions which 
satisfy Eq. (12) in  the three regions, apply the boundary and jump conditions 
and derive the character is t ic  equation. 
i s t ic  equation wi l l  have the fo rm of a polynomial in 0 ,  the degree of the 
polynomial corresponding to the number of surfaces  a t  which n o ( r )  i s  dis-  
continuous. This can a l so  be explained by noting that a surface wave can  
propagate a t  each discontinuity, so that c lear ly  the number of such waves 
i s  just  the number of such surfaces.  F o r  the unperturbed density profile 
descr ibed in Eq,  ( l l ) ,  this  number i s  just  two. Since the coefficients of 
the polynomial a r e  all rea l ,  the roots wi l l  be e i ther  rea l ,  o r  will occur 
in  complex conjugate pa i r s .  In the la t ter  case ,  obviously, one root c o r -  
responds to a growing (unstable) wave and the other to an evanescent 
(damped) wave. 
of the character is t ic  polynomial a re  rea l ,  in  which case  each suTace  wave 
can propagate a t  constant amplitude. 

In the present  case ,  the charac te r -  

Therefore,  stability can only be claimed when a l l  the roots 

It i s  c lear ,  however, that the method described above cannot, a s  i t  
s tands,  be used to  make any firm statement about stability. 
such a statement can only be made when we have obtained a complete set  
of normal  modes; in the present  case,  we have a very  res t r ic ted  set  c o r -  
responding in  number to the number of surface discontinuities present  in  
the unperturbed state.  That this  set i s  not complete is  easi ly  seen by ob- 
serving that no initial condition involving a perturbation in  the charge density 
can  be described b them. 
t rea ted  by Case69 l a n d  Dikii8 i n  connection with the problem of aerodynamic 
shea r  flow. 
t ron  s t r e a m  problem provided a s  assumed here ,  O << Oc. P that  when dno/dr = 0, the solution of Eq. (10) can  be written: 

This is because 

Now an analogous problem has been extensively 

This problem is mathematically identical to the slipping elec-  
Case points out 

where A i s  an  a rb i t r a ry  constant. 
(14) give r i s e  to a continuous spectrum of r ea l  eigenvalues, the spectrum 
covering all angular frequencies present in the unperturbed s ta te .  
eigenfunction corresponds to a delta function perturbation of charge density 
at what might be called the corresponding resonant layer .  Case shows, in 
a par t icular  case ,  by using the method of the Laplace t ransform,  that p e r -  
turbations involving these eigenfunctions decay a t  long time s like various 
algebraic  powers of the t ime.  Therefore,  the stability will depend only 
upon the behaviour of the discrete  normal  modes,  that is those picked out 
by the previous discussion. This proof i s  given in more  general  f o r m  by 
Dikii, and i t  i s  upon the validity of this  proof that our work, together with 
that of Gould, and a large amount of ea r l i e r  work in the field of aerodynamic 
shea r  flows, depends. Among the aerodynamic work, we par t icular ly  note 

The eigenfunctions corresponding to Eq. 

Each  
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the work of Goldstein 9 who considers  a profile having no l e s s  than five 
discontinuities, and hence i s  forced to consider the roots of a quintic poly- 
nomial. This work points out that, if one is willing to undertake a large 
amount of tedious work, an a rb i t r a ry  continuous profile of (say)  electron 
density, can be satisfactorily approximated by a small  number of segments 
i n  each of which the electron density has  a different constant value. I 

Before leaving this  point, we should perhaps in se r t  a caution along 
the following lines: according to Dikii, the resu l t s  obtained by a stability 
analysis of the flow of an  inviscid fluid do in  fact agree  with the resu l t s  ob- 
tained when a small  viscosity is allowed, and then made to tend to zero.  
This i s  an  important point, since the eigenfunctions corresponding to the 
continuous spectrum have discontinuous derivatives;  these jumps cannot rep-  
resent  physical fact in  a r ea l  medium. 
necessary  to introduce more  physics, and in  the fluid case ,  this physics i s  
just  the viscosity. 
interpreting the ideal stability analysis.  In our medium, the jumps in the 
eigenfunctions a r e  a l so  not physically acceptable, however, smoothing them 
out is  obviously not to  be accomplished by the simple addition of a diffusivity 
but would require consideration of the electron dynamics by means of a 
velocity distribution function. 
seems plausible but no more  than that) that Dikii 's resul t  i s  independent 
of the details  of the physical p rocess  whose neglect resulted in the discon- 
tinuous eigenfunctions. 

To smooth out the jumps, i t  i s  

Dikii's observation i s  therefore  of importance when 

We therefore  make the assumption (which 

ESTABLISHMENT O F  THE STABILITY CONDITION 

No further difficulty of a theoretical  nature remains  a t  this stage,  
and we can proceed directly to write down the eigenfunctions, the d isper -  
sion relation, and the condition that both the roots of the la t te r  should be 
r ea l .  The f i r s t  step is  to note the zero  o rde r  potential and electr ic  field 
distribution that a r e  implied by the distribution of charge given in Eq.  (11) 
Taking the conductor at  r = a to be a t  zero potential, we find in  region 1: 

- Q 4o - - -  2n Eo 

In region 2 we find: 

( 2  - P )  Q Neb E = -  - -  
0 2 r ~  r 2 eo 

0 
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In region 3 we find: 

Q Q n x t * / ( c  r 2 2  - b ) t 2 c  2 Q n c - 2 b  r 

4Eo 
9, = -- 

The potential of the outer conductor, a t  r = d i s  related to the charge on the 
inner  conductor by: 

Q Q n -  d (bo@) = - (c2  - b 2 ) t 2c 2 Q n c -  d 2b 2 Qn 
4c0 

a 
0 

The solutions of Eq. ( 1 2 )  a r e  the simple functions r- tQ . We there-  
fore take for  the eigenfunction in  region 2: 

where p and y a r e  a rb i t r a ry  constants. 
region 1 must  vanish a t  r = a, and be continuous with Eq. (19) at r = b. 
Thus 

The eigenfunction appropriate to  

(20 )  
4 = (pb2' t y)  (r2Q - a2') (b2' - a2Q ) - 1  -Q 

The eigenfunction appropriate to region 3 must  vanish a t  r = d, and be con- 
tinuous with Eq. (19) at  r = c .  Thus 

4 = ( p c Z Q  + y)  (dZQ - r Z Q )  (d2' - c Z Q )  -' r - Q  
(21) 

The condition Eq. ( 1 3 )  on the jump in d4/dr a t  r = b, together with the 
s imi la r  one a t  r = c now yield: 

(22)  2 ( 0  t ) (pa2' t y)  = (p t yb-2Q)(b2P - a2') 
2nNeb 

2(0  t-2) QP - Q ( 1  - 7 b 2 ) ]  (pdZp t y )  = - (p t yc - 2 Q )  (d2'-c2') [ 2 ~ N e c  C 

( 2 3 )  

:X The mode Q = 0 has no non-trivial solution. 
Eq. (13) shows that for  this mode d$/dr as well a s  4 is continuous a t  r = b, c .  
The eigenfunction 4 = A t B In r is  therefore valid in a l l  th ree  regions,  
f (a)  = 4(d) = 0 ,  A = B = 0 .  

This can be seen a s  follows: 

If 
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In these e uations, and hence forward, the unit of frequency has  been taken 
to be 0 $?W,, o r  Ne/EoB. The dispersion relation i s  now obtained by writing 
down the condition fo r  consistency of these two l inear  homogeneous equa- 
tions in  p and y. 

-4a2 (d2' - a'') t 2 0  [Q (dZQ - a z Q )  1 (1- 7 )  b2 - Q 

C TNeb C 

(c " -b2') (d2' -c2') (b2' - a2Q)  b -2Q c - 2 Q ]  = o  

The condition for reali ty of the roots of this quadratic in W which i s  a l so  the 
condition for stability of the distribution described is  now easi ly  extracted.  
After some reduction, the condition for stability can be writ ten as: 

2 

- Q  (1 +-2) Q ( 1 - 7 )  b2 (d 2' -a2') t 2(d2' t aZf) - (c2 '+b2 ' )  (*' 2 Q d 2 Q  t l)]  
C 

(25)  
TNeb C 

DEDUCTIONS FROM THE STABILITY CONDITION 

Several  simple deductions a r e  possible f r o m  the stability condition, 
Eq. (25) .  F i r s t ly ,  it is important to  note that the condition Eq. (25)  can  
always be fulfilled for  any geometry by having a sufficiently large positive 
o r  negative value of Q. Alternatively, the condition for  instability will only 
be satisfied by a definite limited range of values of Q (or  of the unperturbed 
potential between the conductors). 

Secondly, we note that i f  ei ther d = c ,  o r  b = a ,  Eq. (25 )  has  the 

The physical meaning of this i s  simply that if ei ther  edge of the 
form of a perfect square,  guaranteeing the sat isfact ion of the stability con- 
dition. 
beam is in  contact with a fixed conductor, the wave that would normally be 
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associated with that edge can now no longer exis t ,  

equation in  0 ,  and therefore incapable of having complex roots.  
case ,  the sys tem is capable of only one r ea l  frequency of oscillation for  any 
Q .  

Alternatively, the d is -  
c persion relation for  this case ,  if derived ab  initio, i s  now simply a l inear  

In such a '  

I 

A simple limiting case  of some in te res t  involves letting d-00 
(removing the outer conducting cylinder) and setting Q = TNe(c 2-b2) so that 
the positive charge on the inner cylinder equals the negative charge in  the 
electron cloud. This implies,  f rom Eq. (16) ,  that Eo vanishes for  r 1 c .  
The condition for  stability in  these circumstances becomes: 

-3 

2Q 
(1 t- - 1) t 2 - -  a 2 

C b2' C 

F o r  simplicity we r e s t r i c t  our attention to the mode Q = 1 : 

2 2 2  2 2  2 2  (c -b ) (2bc-a -c ) (-2bc-a -c. ) 1 0  

2 2 2  
The factor  (c -b  ) i s  always 1 0  and may  be dropped. The l a s t  factor i s  
always negative. The stability condition i s  thus finally: 

2 
a ' t c  2 2 b c  

Regions of stability for this case  for the mode Q = 1 and a few higher modes 
a r e  shown in  Fig.  2. 
potential relative to "infinity". 

In this case ,  the cylinder a t  r = a is a t  a positive 

Another limiting case  of greater  in te res t  for  laboratory purposes  
i s  reached by setting a = 0, that i s ,  removing the inner  conductor. In 
addition, we must set  Q = 0 for consistency. In these circumstances,  the 
stability condition reduces to: 

3 

F o r  Q = 1 this condition reduces to: 

2 2 2  2 2 2  
(d - C  ) (C  -b ) z 0 

which condition i s  satisfied for  all values of the pa rame te r s .  
therefore  always stable. 

This mode is  
F o r  Q = 2 the condition is: 

(c2-b2)2 [c2(c2 t b2)2-4b2d4] 2 0  

o r ,  m o r e  simply: 

2 2 2 
c (c  t b ) 2 2bd 
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.6 
b/c 

.5 

.4 

.3 

.2 

. I  

.o 

- - 

- UNSTABLE - 

- 

- - STABLE 

- Q = v N e ( C - b )  - 2 2  

- 

d 

0 .I .2 .3 .4 -5  .6 -7 -8 -9 1.0 

a /c 

2 2  
Fig .  2 F o r  the case d+m, Q = nNe(c -b ) this  figure shows the 

geometric pa rame te r s  governing the slipping s t r e a m  instability. 
Since a 5 b 4 c only a tr iangle on this figure represents  possible 
geometries.  
important. 
c 2 2b, and that i s  unstable whenever b = c .  

It can be seen that the Q = 1 mode i s  the most  
Note that the configuration i s  stable when a = 0, 
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Regions of stability for  this case for the mode Q = 2 and a few higher modes 
a r e  shown in  F ig .  3 .  

I *  

The stability condition for the plane geometry i l lustrated in F ig .  4 
can be derived f rom Eq.  (25) by letting a ,  b, c ,  d all tend to infinity while 
keeping the differences between these lengths constant. However, in 
o r d e r  to maintain a finite wavelength for the perturbation, it i s  necessary  
to le t  P tend to infinity a s  well, keeping k = l / a  (the wave number of the 
perturbation in the s t r e a m  direction) finite. In this way, one obtains a r e -  
lation involving exponentials. 
one must  replace Q by 2 noa, where o i s  the c a rge  densit on the inner  
conductor. Then, i n  the l imit ,  the t e rm Q/nNeb' = Zoa/Nebz "0, and the 
actual  value of o becomes irrelevant.  
fields i n  regions 1 and 3 for  the plane case  a r e  constants. 
the stability question, either field can be removed by t ransferr ing to a set  
of coordinates moving with appropriate velocity para l le l  to the beam. The 
difference between the two electr ic  fields i s  important,  however, and 
represents  the velocity chan e ac ross  the beam. This velocity change can  
be shown to be equal to  Wp2?Wc multiplied by the beam thickness. An im- 
portant observation is that the plane case  cannot be stabilized mere ly  by 
applying a la rge  positive o r  negative potential between the plates.  
not consider this  ca se  fur ther ,  as it has  been ra ther  thoroughly t rea ted  i n  
the microwave and aerodynamic l i terature  . 

It must a l so  be observed that in this l imit ,  

This makes sense,  since the electr ic  
Without affecting 

We shall  

It i s  known f r o m  the plane case that thin beams a r e  most unstable, 
and this  leads us  to consider the case (1 -b/c) << 1.  If we set  b = c ,  it is  
easi ly  seen that the expression on the left hand side of Eq.  (25) vanishes 
identically, showing that the case  b = c i s  marginally stable. 
study of this  ca se  is  then necessary.  One finds that for  b/c slightly l e s s  
than unity, the sign of the expression i s  opposite to the sign of Q o r ,  f rom 
Eq. (18), the same as  the sign of the potential of the outer cylinder. Thus, 
i f  Q > 0, the thin beam i s  unstable, whereas  i f  Q < 0,  it i s  stable.  F o r  
Q = 0, detailed study shows that the mode Q = 1 may o r  may not be unstable, 
while the higher modes a r e  always unstable. 

More detailed 

This completes the list of simple deductions f r o m  the relation Eq. 
In general ,  any case  can of course be calculated directly f r o m  this (25). 

relation. In Table I we list, by way of example, some cases  selected more  
o r  l e s s  a t  random giving for each case and for  each mode the two values of 
Q (normalized to  Nen (c 2 - bz) ,  the amount of charge pe r  unit axial length 
in the electron cloud) between which there  i s  instability. 
two corresponding values of the potential (normalized to Ne(c2- b2)/2cO) 
between the inner  and outer cylinders between which there  is  instability. 
The c a s e s  l is ted allow one to see the effect of varying each of the geometrical  
quantities a ,  b, c and d i n  turn,  holding the others  constant. F o r  Q -+ m y  
it can  be seen f rom Eq. (25) that the two limiting values of Q converge 
a f te r  normalization to -bz/(c2-b2); this value and the corresponding limit- 
ing potential i s  a lso l is ted for  each case .  

We a lso  l i s t  the 

, 
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c /d 

a = o  
Q =  0 

b /d 

Fig .  3 F o r  the case a = 0 ,  Q = 0 this f igure shows the geometric 
pa rame te r s  governing the slipping s t r e a m  instability. . Since 
b 5 c 5 d only a triangle on this f igure r ep resen t s  possible 
geometries. 
geometry; the Q = 2 mode is  therefore  the most  important.  
that when b = 0 the configuration i s  stable f o r  all values of C >  0 ,  
and that when b = c i t  is always unstable. 

The Q = 1 mode cannot lead to instability in this 
Note 
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. 

/ t REGION 3 

REGION I 
CONDUCTING 

WALLS 

/ / / / / / / / / / / / / / / / / I / / / / / / / / /  I / / / / / / / / /  

Fig.  4 I l lustrates  the manner in  which the planar problem can be 
approached a s  a limiting case  of the cylindrical problem. 

. 
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TABLE I 

a/d b/d c/d P Q,  Q2 Q l  $2 

. I  . 2  . 3  1 2 . 7 5  . 1 0  - 4 . 9 5  1 . 1 5  

2 1 . 1 7  -. 0 2  - 1 . 3 3  1 . 4 2  

3 . 4 3  - .  1 3  . 39 1 . 6 8  

4 . 0 6  -. 22 1. 24 1 . 8 9  

m - .  8 3. 22 

2 . 4  . 6  1 1 . 9 6  . 0 4  - 2 . 4 6  . 6 2  

2 1 . 0 0  - .  04 - . 9 3  . 75 

3 . 3 9  - .  14  . 0 5  . 9 1  

4 . 0 5  - _  23 . 60 1. 05  

m - .  8 1 . 9 7  

2 . 4  . 8  1 ' 2 4  -. 01 . l l  . 5 1  

2 . 0 6  - .  06 . 3 9  . 59 

3 - . 0 5  -. 11 . 58 . 66 

4 - . 1 2  - _  14  . 6 8  . 7 2  

m - .  33 1 .  03  

2 . 6  . 8  1 2 . 9 6  . 0 2  -4 .  41 . 3 2  

2 1 . 8 1  - .  12 - 2 .  56 . 5 5  

3 . 9 8  -. 24 - 1 . 2 2  . 74 

4 . 4 3  - _  34 - . 3 5  . 9 0  

m - 1 .  28 2 .  42 

4 . 6  . 8  1 1 . 9 5  - .  15  - 1 . 4 4  . 4 9  

2 1 . 4 1  - .  20 - . 9 4  . 5 4  

3 . 8 4  - .  27 - . 4 2  . 6 0  

4 . 3 9  - .  35 0 . 6 8  

m - 1 .  28 1 . 5 3  -- 

Table I. This table l i s t s  for various values of the rat ios  a/d, b/d and 
c/d, and for  various mode numbers ,  the range of charges  on 
the inner cylinder,  o r  of potentials a c r o s s  the two conducting 
cylinders, between which instability ex is t s .  For fixed geome- 
try, the upper and lower potentials tend, with increasing mode 
number, to the same l imit ;  this limit ' s  s own a s  Q = 00. The 
unit of charge pe r  unit length is Nen(c -b ), the unit of poten- 

-1 2 2 tial i s  1 Neeo 
2 

i P  
( C  -b  ). 
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COUETTE F L O W  ANALOGY AND AXIAL PERTURBATIONS 

An exact analogy exis ts  between the two-dimensional electromagnetic 
problem discussed in this paper ,  and the two-dimensional motion of an incom- 
press ib le  frictionless fluid, the velocity fields being the same i n  each case .  
The incompressibil i ty of the fluid flow field i s  guaranteed by Eq. (5).  
electromagnetic case ,  the electron density n i s  re la ted to the potential 4 by 
Poisson 's  equation: 

In the 

2 
-n/Eo = V qi (33) 

The conservation of charge then gives, f rom Eq. (7)  

D(V'4) Dt = 0 (34) 

In the fluid case ,  qi is  related to the velocity components by Eq. ( 3 )  and Eq. 
(4), and therefore  has  the character  of a s t r e a m  function. 
g , i s  then given by 

The vorticity, 

The vorticity of a fluid element i s  conserved, following the motion of a 
per fec t  incompressible fluid. Hence 

D(v2$)/Dt = 0 

Finally,  a t  a solid boundary the normal component of velocity vanishes, 
corresponding exactly (through the relation E, t 
of the tangential e lectr ic  field at a perfect conductor. 

x B, = 0 )  to the vanishing 

The purpose of bringing out the above analogy is to be able to make 
use of the substantial body of work lo ,  l 1  dealing with the stability of two, 
dimensional plane shear  flows and flows between rotating cylinders.  Indeed, 
reference has  a l ready been made to this work i n  connection with the problem 
of the continuous spectrum of eigenvalues. 
d i scuss  i n  this  paper .  
s t a t e s  that a rotating fluid is  stable only i f  

The fo rmer  case  we shall not 
F o r  the la t ter  case ,  a well known resul t  of Rayleigh12 

d 2 - (r  vo) 2 0 d r  

This  resul t  i s  obtained f rom simple considerations of energy and angular 
momentum. The analogous electromagnetic condition would be 

d 2 - (r Eo) 2 0 d r  . 

-15- 
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In regions 1 and 3 (Eqs.  (15) and (17)) this condition is  marginally fulfilled. 
In region 2 it reduces to 

E I O  
0 

This condition will be satisfied at r = b i f :  

Q r O  

(39) 

We have in the foregoing seen that i f  Q is  sufficiently large and positive, 
any geometry can  be stabilized. 
pa r  adox? 

What i s  the meaning of this apparent 

The result (Eq. ( 3 7 ) )  appears  to be concerned only with conditions 
i n  the plane. In reali ty,  however, i t  depends for  i t s  validity upon the 
possibility of an interchange which can take place only with motions in the 
axial direction. Formal ly  then, a t  least ,  it is  hardly surpr is ing that an  
analysis neglecting motion in  this direction should a r r i v e  a t  resu l t s  which 
a r e  quite different f rom Eq. (37). We sti l l  have the possibility, however, 
that any stability predicted on the basis  of Eq. (25) in violation of Eq. (37) 
may be spurious since axial motion may i n  fac t  allow interchanges to take 
place. 

We shall confine ourselves  in this r ega rd  to a few observations.  
In the f i r s t  place, when three-dimensional motion a r e  considered, the 
analogy discussed breaks  down. This is  seen most  simply a s  follows: 
E, t x x  a = 0 implies E,= 0 and hence no axial f ields.  But the equation 
of motion of the fluid is governed simply by the axial  p r e s s u r e  gradient.  
To obtain axial motions in  the elctromagnetic problem, we a r e  obliged 
to  introduce more physics, and in par t icular  we must  write an equation 
governing the desired axial  motion. Such an equation should bring in  the 
effects of finite electron "temperature" and m a s s .  More cor rec t ly ,  one 
should use the Vlasov sys tem of equations to obtain a kinetic description of 
the situation. 

At present,  e f fec ts  of this type and their  implications a r e  not fully 
understood. It i s  c l ea r ,  however, that a high electron tempera ture ,  
corresponding to easy  motion along field l ines ,  w i l l  have a strong tendency 
to  nullify e lectr ic  fields in  the z-direction, and hence to validate our two- 
dimensional resul ts ,  

CONCLUDING REMARKS 

It has  been demonstrated that, when axial  e f f ec t s  can be ignored, 
proper  selection of dimensions and potentials can ensure  stability against 
the diocotron effect in  cylindrical  geometr ies .  

-16- 
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